Canonical Nonclassical Hopf-Galois Module Structure of Nonabelian Galois Extensions

Paul Truman

Keele University, UK

Hopf-Galois Structures on Galois Extensions

- Let L/K denote a finite Galois extension of fields with group G.
- The group algebra *K*[*G*], with its usual action on *L*, gives a Hopf-Galois structure on the extension *L*/*K*.
- There may be other Hopf algebras giving Hopf-Galois structures on the extension.
- It might be interesting to make comparisons between them.
- Let Perm(G) be the group of permutations of G. Define an embedding λ : G → Perm(G) by left translation:

$$\lambda(g)(h) = gh$$
 for $g, h \in G$,

and an action of G on Perm(G) by conjugation via λ :

$${}^{g}n = \lambda(g)n\lambda(g^{-1})$$
 for $g \in G, n \in \mathsf{Perm}(G)$.

Greither-Pareigis Theory

Theorem (Greither and Pareigis)

- There is a bijection between regular subgroups N of Perm(G) normalized by λ(G) and Hopf-Galois structures on L/K.
- The Hopf algebra giving the Hopf-Galois structure corresponding to the subgroup N is

$$H = L[N]^G = \{z \in L[N] \mid {}^g z = z \text{ for all } g \in G\}.$$

 The action of an element of such a Hopf algebra on an element t ∈ L is given by

$$\left(\sum_{n\in\mathbb{N}}c_nn\right)\cdot t=\sum_{n\in\mathbb{N}}c_nn^{-1}(1_G)[t].$$

The Canonical Nonclassical Structure

- We can also define another embedding $\rho: G \to \mathsf{Perm}(G)$ by right translation:
- The groups $\lambda(G)$ and $\mathfrak{G}(G) \stackrel{h}{=} hg^{-1}$ for $\mathfrak{g}_{\mathcal{B}} \stackrel{h}{=} G$. of Perm(G) and are normalized by $\lambda(G)$, so they correspond to Hopf-Galois structures on L/K.
- The action of $\lambda(G)$ on $\rho(G)$ by conjugation is trivial, so we have:

$$L[\rho(G)]^G = L^G[\rho(G)] = K[\rho(G)],$$

and this subgroup corresponds to the classical structure.

If G is abelian then λ(G) = ρ(G), but if G is nonabelian then the subgroup λ(G) corresponds to a canonical nonclassical Hopf-Galois structure on L/K. In this case the action of λ(G) on itself by conjugation is not trivial, so we have

$$L[\lambda(G)]^G \neq K[\lambda(G)].$$

Hopf-Galois Module Theory

• Now suppose that L/K is an extension of local or global fields.

Definition

If L/K is *H*-Galois for some Hopf algebra *H* then we define the *Associated Order* of \mathfrak{O}_L in *H* by

$$\mathfrak{A}_{H} = \{ h \in H \mid h \cdot x \in \mathfrak{O}_{L} \text{ for all } x \in \mathfrak{O}_{L} \}.$$

- What can we say about the structure of \mathfrak{O}_L as an \mathfrak{A}_H -module?
- Each Hopf algebra that gives a Hopf-Galois structure on L/K provides a different description of D_L.
- There exist wildly ramified extensions of *p*-adic fields L/K for which \mathfrak{O}_L is not free over $\mathfrak{A}_{K[G]}$ but is free over \mathfrak{A}_H for some other Hopf algebra *H* giving a nonclassical Hopf-Galois structure on L/K.

Hopf-Galois Module Theory

- Suppose that L/K is *H*-Galois for $H = L[N]^G$.
- The \mathfrak{O}_K -order $\mathfrak{O}_L[N]^G$ is contained in the associated order \mathfrak{A}_H of \mathfrak{O}_L .
- If L/K is wildly ramified then 𝔅_L[N]^G ⊊ 𝔅_H, but if L/K is at most tamely ramified then it is possible that 𝔅_L[N]^G = 𝔅_H:

Theorem (PT)

Suppose that L/K is a finite Galois extension of *p*-adic fields with group *G*, that $p \nmid [L : K]$, and that *N* is abelian. Then $\mathfrak{O}_L[N]^G$ is the unique maximal order in $H = L[N]^G$ and \mathfrak{O}_L is a free $\mathfrak{O}_L[N]^G$ -module.

• At this conference last year I asked: Can we remove the hypothesis that *N* is abelian?

Hopf-Galois Module Theory

Conjecture

Suppose that L/K is a finite Galois extension of *p*-adic fields with group *G* and that $p \nmid [L : K]$. Then $\mathfrak{O}_L[N]^G$ is **a** maximal order in $H = L[N]^G$ and \mathfrak{O}_L is a free $\mathfrak{O}_L[N]^G$ -module.

Counterexample

- Let p be a prime that is congruent to 2 modulo 3, so that the field Q_p does not contain a primitive cube root of unity.
- Let *L* be the splitting field of $x^3 p$ over \mathbb{Q}_p . Then L/\mathbb{Q}_p is tamely ramified and Galois with group $G \cong D_3$.
- Since G is nonabelian, L/Q_p has a canonical nonclassical Hopf-Galois structure, corresponding to the regular subgroup λ(G) of Perm(G). Let H_λ = L[λ(G)]^G denote the corresponding Hopf algebra.

• Then \mathfrak{O}_L is free over its associated order \mathfrak{A}_λ in H_λ , but $\mathfrak{O}_L[N]^{\mathcal{G}} \subsetneq \mathfrak{A}_\lambda$.

Main Results

- Let *L*/*K* be a finite Galois extension of local or global fields in characteristic 0 or *p* with nonabelian Galois group *G*.
- Denote by H_λ the Hopf algebra giving the canonical nonclassical Hopf-Galois structure on L/K.

Theorem

A *G*-stable fractional ideal of *L* is free over its associated order in K[G] if and only if it is free over its associated order in H_{λ} .

Theorem

An element $x \in L$ generates L as K[G]-module if and only if it generates L as an H_{λ} -module.

Consequences of the main results

Corollary

If L/K is a tame nonabelian Galois extension of local fields then any fractional ideal of L is free over its associated order in H_{λ} .

Corollary

If L/K is a tame nonabelian Galois extension of global fields then \mathfrak{O}_L is locally free over its associated order in H_{λ} .

Corollary

If L/\mathbb{Q} is a tame nonabelian Galois extension whose degree is not divisible by 4 then \mathfrak{O}_L is free over its associated order in H_{λ} .

Consequences of the main results

Corollary

If L/K is a nonabelian Galois extension of *p*-adic fields which is weakly ramified then \mathfrak{O}_L is free over its associated order in H_{λ} .

Corollary

If L/K has has simple nonabelian Galois group then the extension admits only the classical and the canonical nonclassical Hopf-Galois structures, and a *G*-stable fractional ideal \mathfrak{B} is either free over its associated order in both of these or in neither of them.

Corollary

If L/K is a nonabelian extension of local fields which has a valuation criterion for normal basis generators then it also has a valuation criterion for H_{λ} -generators.

- Suppose that \mathfrak{O}_L is free over $\mathfrak{A}_{K[G]}$, with generator $x \in \mathfrak{O}_L$.
- Let a_1, \ldots, a_n be an \mathfrak{O}_K -basis of $\mathfrak{A}_{K[G]}$.
- For each *i*, write $x_i = a_i(x)$. Then the x_i are an \mathfrak{O}_K -basis of \mathfrak{O}_L .
- Note that x also generates L as a K[G]-module, so the set {σ(x) | σ ∈ G} is a K-basis of L.
- Let $\{\sigma(x) \mid \sigma \in G\}$ be the dual basis with respect to the trace form.

$$\widehat{\sigma(x)} = \sigma(\widehat{x})$$

for each $\sigma \in G$. So

$$\operatorname{Tr}_{L/K}(\sigma(\widehat{x})\tau(x)) = \delta_{\sigma,\tau}$$

for $\sigma, \tau \in G$.

• For each *i*, define an element $h_i \in L[\lambda(G)]$ by

$$h_i = \sum_{g \in G} \left(\sum_{\rho \in G} \rho(x_i) g^{-1} \rho(\widehat{x}) \right) \lambda(g).$$

It turns out that each h_i ∈ L[λ(G)]^G, so it makes sense to let each h_i act on elements of L according to the formula

$$egin{aligned} &\left(\sum_{g\in G}c_g\lambda(g)
ight)\cdot t &=& \sum_{g\in G}c_g\lambda(g)^{-1}(1_G)(t) \ &=& \sum_{g\in G}c_gg^{-1}(t). \end{aligned}$$

• We will show that $h_i \cdot x = x_i$ and that each $h_i \in \mathfrak{A}_{\lambda}$, the associated order of \mathfrak{O}_L in H_{λ} .

$$h_{i} \cdot x = \left(\sum_{g \in G} \left(\sum_{\rho \in G} \rho(x_{i})g^{-1}\rho(\widehat{x}) \right) \lambda(g) \right) \cdot x$$
$$= \sum_{g \in G} \left(\sum_{\rho \in G} \rho(x_{i})g^{-1}\rho(\widehat{x}) \right) g^{-1}(x)$$
$$= \sum_{\rho \in G} \rho(x_{i}) \left(\sum_{g \in G} g^{-1}\rho(\widehat{x})g^{-1}(x) \right)$$
$$= \sum_{\rho \in G} \rho(x_{i}) \operatorname{Tr}_{L/K}(\rho(\widehat{x})x)$$
$$= \sum_{\rho \in G} \rho(x_{i})\delta_{\rho,1}$$
$$= x_{i}.$$

- We still need to show that each h_i is in \mathfrak{A}_{λ} .
- It is sufficient to show that $h_i \cdot x_j$ for any *i* and *j*.
- It turns out that for $z \in H_{\lambda}$ and $\sigma \in G$ we have

$$z \cdot \sigma(t) = \sigma(z \cdot t)$$
 for all $t \in L$,

so for any i and j we have

$$egin{array}{rcl} h_i\cdot x_j&=&h_i\cdot a_j(x)\ &=&a_j(h_i\cdot x)\ &=&a_j(x_i), \end{array}$$

and this lies in \mathfrak{O}_L since $x_i \in \mathfrak{O}_L$ and $a_j \in \mathfrak{A}_{K[G]}$.

So each h_i ∈ 𝔄_λ and the set {h_i · x | i = 1,..., n} is an 𝔅_K-basis of 𝔅_L. Therefore 𝔅_L is a free 𝔅_λ-module.

What about the Converse?

- We can use the same ideas to show that if D_L is a free A_λ-module then it is a free A_{K[G]}-module.
- In this case we need to know that if and element x ∈ L is an H_λ-generator of L then it is a K[G]-generator of L, so that we can consider the dual basis with respect to the trace form.
- For this, we need the second of the main theorems.

Further Questions

- Does assuming that one of 𝔅_{K[G]} or 𝔅_λ is a Hopf order imply that the other is too? This might be particularly interesting for tame extensions, where 𝔅_{K[G]} = 𝔅_K[G] which is certainly a Hopf order.
- Does assuming that one of 𝔅_{K[G]} or 𝔅_λ is a Maximal order imply that the other is too?
- In the tame case, can we find a criterion for $\mathfrak{A}_{\lambda} = \mathfrak{O}_{L}[\lambda(G)]^{G}$?